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1. Introduction 

The carbon intensities (CIs) of biofuels are determined with the life cycle analysis (LCA) 

technique, which accounts for the energy/material uses and emissions during the complete supply 

chain of a biofuel including feedstock production and fuel conversion stages.  

Regulatory agencies such as California Air Resources Board (CARB) adopts LCA to calculate 

biofuel CIs. The Low Carbon Fuel Standard (LCFS) program developed by CARB allows 

individual biofuel conversion facilities to submit their own biofuel CIs with their facility input data 

and incentivizes the reduction in the CI specific to that particular facility compared to a reference 

fuel’s CI (Liu, Kwon, et al., 2020). Such an incentive program has driven innovations in 

biorefineries to reduce their greenhouse gas (GHG) emissions by linking the plant's revenue 

directly to its CI score through LCFS credit trading.  

Besides biofuel conversion stage, different farming practices for feedstock growth can result in 

significant CI variations for feedstocks, thus for biofuels. To provide evidence-based research 

findings, the U.S. Department of Energy’s Advanced Research Projects Agency–Energy (ARPA-

E) has supported the Systems Assessment Center of the Energy Systems Division at Argonne 

National Laboratory to examine CI variations of different farming practices to grow agricultural 

crops for biofuel production. Meanwhile, the ARPA-E has launched the Systems for Monitoring 

and Analytics for Renewable Transportation Fuels from Agricultural Resources and Management 

(SMARTFARM) program to develop technologies and data platforms that enable an accurate 

measurement of key farming parameters that can help robust accounting of the GHG benefits of 

sustainable, low-carbon agronomic practices at farm level. 

A transparent and easy-to-use tool for feedstock-specific, farm-level CI calculation of feedstocks 

is especially helpful. With the ARPA-E support, we have developed a tool - the Feedstock Carbon 

Intensity Calculator (FD-CIC). The first version of FD-CIC was released with the GREET® model 

in 2020 (Wang et al., 2020) so that corn feedstock producers can use this publicly available tool 

(https://greet.es.anl.gov/tool_fd_cic) to quantify corn grain CIs with farm-level input data and 

management practices. In the 2021 version, we expand the tool’s capabilities by including 

additional feedstocks such as soybeans, sorghum, and rice. Similar to corn, it calculates the farm-

level CI for these feedstocks by allowing user-defined farm-level farming inputs and incorporating 

https://greet.es.anl.gov/tool_fd_cic
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the GHG emission intensities of these inputs from GREET (in particular, GREET1, the fuel cycle 

model of GREET).  

Currently, dynamic and standalone versions of FD-CIC are available. The dynamic version 

interacts with the GREET model by directly reading the life-cycle inventory (LCI) data of key 

farming inputs from it. This version suits well when users want to change the GREET default 

settings that affect the GHG emission intensities of farming inputs. For example, if the users want 

to assess the impact of using regional electricity grid mix to produce key farming inputs, instead 

of the U.S. average grid mix, they can modify the grid mix in the GREET model and utilize the 

interacting feature in the FD-CIC to re-read the updated CI values for those key farming inputs. 

The interacting feature also enables the CI values to be updated with annual GREET release. The 

standalone version is built for users who are not familiar with the GREET model and contains the 

GREET default LCI data for key farming inputs.  

 

2. Description of the FD-CIC 

2.1 System boundary and key parameters 

The system boundary of FD-CIC covers the cradle-to-farm-gate activities, including upstream 

emissions related to farming input manufacturing and feedstock production (Fig. 1).  
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Figure 1: The system boundary of FD-CIC (i.e. cradle-to-farm-gate activities) compared to a complete supply 

chain of a biofuel (Modified from Liu et al 2021). 
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The FD-CIC helps stakeholders to assess effects of changing farm-level input parameters on 

feedstock CI scores in the biofuel LCA context. Three key sources of GHG emissions from 

feedstock production are accounted for in FD-CIC, as detailed in the following three subsections. 

2.2 Emissions from farming inputs and on-farm energy consumption 

Farming inputs and on-farm energy consumption are the main LCI data required to estimate the 

GHG emissions associated with their upstream manufacturing and on-farm use. In FD-CIC, the 

users need to enter the usage amount per acre for fertilizer/chemical inputs and common energy 

carriers – diesel, gasoline, natural gas, liquefied petroleum gas, and electricity. If farms have not 

used a specific energy/fertilizer type, as defined in FD-CIC, the value for the specific type should 

be set to zero. The GREET default farming input data are also provided as the reference, which 

are based on results from U.S. Department of Agriculture (USDA)’s major survey programs, such 

as the National Agricultural Statistics Service (NASS), the Economic Research Service (ERS), 

and the Office of the Chief Economist (OCE) reports. The collected data are mostly accessible 

through the Quick Stats database (https://quickstats.nass.usda.gov/). Through personal 

communications with USDA ERS staffs, we received the on-farm energy consumption data that 

are based on Agricultural Resource Management Survey (ARMS) costs and returns survey for 

three feedstocks, namely, corn in 2016, soybean in 2018, and rice in 2013, which are not publicly 

available yet. USDA ERS has approved Argonne’s public release of the data through the GREET® 

Open-Source Database (https://greet.es.anl.gov/databases). We also compiled the energy use in 

sorghum farming from National Sorghum Grower (NSP)’s report and tool 

(https://sorghumgrowers.com/sustainability/). 

 

2.3 Soil nitrous oxide emissions from nitrogen inputs 

Two sources of nitrogen inputs to soil are considered in GREET and FD-CIC, namely, nitrogen 

from fertilizer application and nitrogen in crop residues left in the field after harvest. The 

content of nitrogen in crop residues is estimated using the harvest index and nitrogen contents 

of above- and below-ground biomass (Wang, 2007).  

On-field N2O emissions from fertilizer and biomass nitrogen inputs to soil have the largest 

contribution to the cradle-to-farm-gate GHG emissions of corn (Liu, Kwon, et al., 2020) due to 

the high global-warming potential of N2O (265 g CO2e/g N2O base on IPCC’s AR5 100-year 

https://quickstats.nass.usda.gov/
https://greet.es.anl.gov/databases
https://sorghumgrowers.com/sustainability/
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global warming potential) as compared to CO2. As with GREET, FD-CIC calculates soil N2O 

emissions associated with feedstock production using the empirically derived emission factors 

(EFs), which assume a linear relationship between soil N2O emissions and nitrogen inputs. FD-

CIC 2021 adopts the direct soil N2O EFs disaggregated by climate zones (i.e. wet or dry), 

according to a meta-analysis of field experiment data collected from nine major corn producing 

states (Xu et al., 2019), as shown in Fig. 2 and Table 1.  

 

Figure 2. IPCC climate zone for the conterminous U.S and location of field experiments included in the 

expanded database of Xu et al (2019). 

 

Table 1 The direct EFs (kg N2O-N per kg N) disaggregated from (Xu et al., 2019) for corn farming 

By climate Mean1  Standard 

deviation 

Sample size Standard error 95% Confidence 

interval 

Wet 0.01 0.012 200 0.0008 0.002 

Dry 0.005 0.0039 94 0.0004 0.0008 

1 The values in bold is adopted in FD-CIC. 

2 The EFs are calculated as arithmetic averages of measurements from each experimental site to represent the entire climate zone, instead of 

weighted averages using crop production capacity as the weighting factor 
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Note that the IPCC recently published the report of 2019 Refinement to the 2006 IPCC Guidelines 

for National Greenhouse Gas Inventories (IPCC, 2019) where direct N2O EFs are disaggregated 

by climate. However, we did not choose to employ the IPCC 2019 direct N2O EFs since they are 

not crop specific and thus may not represent direct N2O emissions from corn farming in U.S. 

Midwest where corn-soybean rotation is a representative agricultural rotation. By default, FD-CIC 

employs a 1% N2O EF to estimate the direct N2O emissions from soil (Table 1). Due to the lack 

of crop-specific N2O EF, we apply the corn-based N2O EF to other U.S. feedstock production (i.e., 

soybean and sorghum) while employing the IPCC 2019 direct N2O EF for flooded rice production 

(0.004 kg N2O-N per kg N).  

In addition to the direct N2O emissions, N2O can also be produced through indirect processes, 

which include the volatilization of nitrogen fertilizers, and the leaching and runoff of nitrate from 

the fertilizers. Instead of the indirect N2O EFs from the IPCC 2006 used in previous GREET 

versions and FD-CIC 2020, GREET 2021 and FD-CIC 2021 adopt the new EFs updated in IPCC 

2019 refinements (Table 2). The decision on whether to use aggregated or disaggregated EFs was 

made based on the uncertainty range. One noticeable difference is that the indirect EF for 

leaching/runoff is now disaggregated into dry and wet climate zones.  

 

Table 2. Indirect EFs (kg N2O-N per kg N) in IPCC 2019 refinement 

 

 

Aggregated1  Disaggregate1 

Emission factor Default 

value  

Uncertainty 

range 

Climate 

zone 

Default 

value  

Uncertainty 

range 

EFleach
 (leaching/runoff) 0.011 0 - 0.02    

Fracleach  0.24  Wet  0.24 0.01 - 0.73 

Dry  0  

EFvol
 (Volatilization) 0.010 0.002 – 0.018 Wet  0.014 0.011 – 0.017 

Dry  0.005 0.000 – 0.011 

Fracvol from synthetic fertilizer 0.11 0.02 – 0.33    

Fracvol from all organic N fertilizers 

applied, and dung and urine 

deposited by grazing animals 

0.21 0.00 – 0.31    

1 The values in bold is adopted in FD-CIC. 

 

In summary, the updated EFs without consideration of climate zones are revised from 0.01325 to 

0.01374 kg N2O-N per kg N (Table 3).  
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Table 3. Updated EFs (kg N2O-N per kg N) based on IPCC 2019 refinement 

 

 

Direct EF Indirect EF (nitrogen source1) 

Aggregated 0.01 0.00264 (crop residue), 0.00374 (synthetic fertilizer), and 0.00474 (manure) 

Disaggregated   

Wet 0.01 0.00264 (crop residue), 0.00418 (synthetic fertilizer), and 0.00558 (manure) 

Dry 0.005 0 (crop residue), 0.00055 (synthetic fertilizer), and 0.00105 (manure) 

1 No volatilization from crop residue. 

 

2.4 Soil organic carbon sequestration 

Feedstock production can be managed to enhance soil organic carbon (SOC) sequestration with 

conservation land management practices, by either increasing carbon inputs to soils (via crop 

residues) and/or reducing carbon losses from soils (Paustian et al., 2019). However, shifting 

farming practices to increase SOC stock has not been incentivized by biofuel regulatory programs 

yet, due to the lack of protocols for monitoring this variable and the permanency issue associated 

with SOC (Liu et al., 2021). Without properly accounting for the impacts of SOC change, the 

benefits introduced by the adoption of conservation practices tied to carbon sequestration and 

abatement may not be adequately quantified and incentivized. Therefore, it is an emerging area 

attracting increasing attentions from stakeholders in the bioeconomy, including feedstock 

producers, government agencies, and fuel regulatory programs.  

To address this need from stakeholders, the FD-CIC accounts for the potential impacts of SOC 

changes associated with changes in farming practices on the feedstock CI accounting. The SOC 

impacts on corn and soybean CI are evaluated by modeling the county-level SOC changes under 

corn-soybean rotation prevalent in most of U.S. Midwest (Liu, Kwon, et al., 2020).  

As an important component in biofuel LCA, land use change (LUC) -induced emissions have been 

incorporated into biofuel CI calculation to account for SOC sequestration/GHG emissions 

associated with the shift in land-use and land-cover for large-scale biofuel feedstock production. 

However, since the FD-CIC focuses on the cradle-to-farm-gate activities, it does not include LUC 

emissions in CI calculation but has a lookup table for SOC sequestration potentials of diverse 

farming practices to address great opportunities for CI reductions. LUC-induced direct and indirect 
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 emissions are included in the Carbon Calculator for Land Use and Land Management Change 

from Biofuels Production (CCLUB) module of the GREET model (Kwon et al., 2020).  

 

3. Use of FD-CIC 

The structure of the FD-CIC tool is presented in the “Overview” worksheet (Fig. 3) that defines 

the color schemes of cells for different types of parameters used in the FD-CIC and provides the 

key references that support the development of the FD-CIC. For each feedstock considered by FD-

CIC, we include separate worksheets - “Inputs”, “Intensities of Inputs”, and “Results”. This design 

is to facilitate users who are interested in a particular feedstock. We incorporate separate 

“Intensities of Inputs” tab for each feedstock so that users can independently evaluate the impacts 

of CI changes in farming inputs on the CI of feedstock produced. The dynamic version has a 

control button named “Read from GREET” while the standalone version does not. This function 

enables the interaction between the FD-CIC and the GREET model. This “Read from GREET” 

button will only work if users have GREET version 2020 or later. Moreover, the GREET1 excel 

file should be in the same folder of one’s computer as with the FD-CIC tool to make this function 

work.  

3.1 Overview worksheet 

This worksheet contains a section for the users to select the crop of interest. For example, the user 

can click the “Corn” button to jump to the “Corn Inputs” sheet.  
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Figure 3. Structure of FD-CIC 

 

The users can activate/deactivate the stochastic simulation function by clicking the “Load 

Stochastic Toolkit”/ “Unload Stochastic Toolkit” button. In FD-CIC 2021, we incorporated 

stochastic simulation capability to perform uncertainty analysis on feedstock CI estimates, 

leveraging the stochastic simulation capability of the GREET model (Subramanyan & Diwekar, 

2005). More details will be discussed below in Section 3.5.  

The FD-CIC tool uses U.S. customary units by default (e.g., pound per acre, short ton), followed 

by intermediate calculations to translate them into the GREET customary units for CI calculation 

(i.e., grams of GHG emitted per short ton of fertilizer or per British Thermal Unit of energy), so 

that the CI coefficients obtained from the GREET model can be utilized. It is noteworthy that 

herbicide and insecticide types are not differentiated because of their small contribution to the 

overall feedstock CI (< 2%). 
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3.2 Inputs worksheet 

3.2.1 Farming input parameters 

3.2.1.1 Corn specific inputs 

Key parameters affecting corn feedstock CI include corn yield, fertilizers/chemicals application 

rates, and agronomic practices. GREET default values reflecting US average corn farming are 

provided as the baseline scenario (Fig. 4). Users can modify the blue cells to build their specific 

case and compare the results with the GREET default scenario. Note that in FD-CIC, the units for 

fertilizer are in actual nutrient contents/acre, instead of actual products/acre.  

 

 

Figure 4: Farm-level inventory required by FD-CIC 
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FD-CIC provides several regional/technological options for users to choose from and explore their 

impacts on the cradle-to-farm gate GHG emissions for corn farming (Fig. 5):  

 

Figure 5: Region/technology options affecting GHG emissions from N fertilizer application for corn feedstock 

production. 

 

Disaggregated N2O EFs based on climate zone information — These EFs allow users to choose 

the county in which their farm-of-interest is located. The users then need to press the “Refresh” 

button to fetch the climate zone information and decide whether they want to use the climate zone-

specific N2O EF or the default one, as detailed in Section 2.3.  

Applying Enhanced Efficiency Fertilizer (EEF) — EEF reduces fertilizer-induced N2O 

emissions but incurs additional GHG emissions in its upstream production. Nitrification inhibitor 

(NI) is a type of EEF, which slows down the nitrification process in which fertilizers are broken 

down to nitrates and N2O. According to Thapa et al. (2016), NI reduces N2O emissions compared 

to conventional nitrogen fertilizer by 30%. This empirical value is adopted by FD-CIC. 

Nevertheless, FD-CIC has not accounted for the GHG emissions associated with the production 

and transportation of NI since it contributes only a minor proportion of the cradle-to-farm-gate 

emissions for corn farming. 

Using 4R (Right time, Right place, Right form, and Right rate) nitrogen fertilizer 

management — This management practice enhances nitrogen use efficiency while reducing direct 
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N2O emissions. The current GREET model adopts a single nitrogen to N2O conversion factor for 

nitrogen-based fertilizer. While this approach has been well accepted in LCA models, there is a 

growing interest in evaluating the impact of 4R nitrogen fertilizer management on N2O emission 

reduction. Evidence suggested that the right fertilizer rate is the most important factor among 4R 

management (Millar et al., 2010). In reality, many corn farmers have already implemented 4R 

practice to some extent by determining the right rate. This process requires the estimation of 

“nitrogen need” from historical corn yields, crop rotations, and soil characteristics so that 

economic optimum nitrogen rate for each field is determined and applied to soils without the 

surplus nitrogen, which is vulnerable to environmental losses.   

In FD-CIC 2021, we incorporated a technological option “Whether nitrogen is managed by 4R 

practice” for corn farming to let the users approximately estimate the direct N2O emission 

reduction potential if 4R nitrogen fertilizer management practice is implemented on farm. Due to 

the significant spatial variations in soil and climate conditions, the optimal nitrogen application 

rate, form, place, and timing would vary between farms. Therefore, we employed a simplified 

nitrogen balance approach, as detailed in Eagle et al. (2020). This study indicated that the soil 

surface nitrogen balance, which is the difference between nitrogen inputs to and outputs from a 

farm field, is a robust indicator of direct N2O emissions from fields with corn and other major 

rainfed temperate‐region crops (Eq 1).  

𝑁2𝑂 − 𝑁 = 𝑒𝑥𝑝(0.339 + 0.0047 × 𝑁𝐵𝑎𝑙)                  (Eq.1) 

where N2O-N is the annual cumulative N2O emissions in the unit of kg N2O-N ha-1; the nitrogen 

balance or NBal is the annual nitrogen balance in the unit of kg N ha-1, which is calculated as the 

difference between total N applied (i.e. N from synthetic fertilizer, organic amendment, N‐fixing 

cash or cover crops, and irrigation water) and total N harvested (i.e. N in crop and crop residue 

removed). Inserting the national estimate of NBal, 60 kg N ha-1 from Xia et al. (2021), into Eq.1 

renders a direct N2O EF of 1.86 kg N2O-N ha-1, which coincides with the 1.81 kg N2O-N ha-1 value 

calculated via the empirically-derived EFs approach using the GREET model (Section 2.3). This 

indicates that the simplified nitrogen balance approach in Eagle et al. (2020) can be utilized to 

estimate the direct N2O emissions if NBal is available. We assume that whenever nitrogen inputs 

are managed by 4R practices, the NBal should be close to zero, meaning that nitrogen has only 

been applied in the right rate and form when and where needed with minimized surplus. While this 
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assumption may be simplistic, it provides a rough estimation of the maximum direct N2O emission 

reduction potential. Under this assumption, the direct N2O emission would be 1.4 kg N2O-N ha-1, 

regardless of nitrogen input rates applied to soils. Considering a national average corn yield of 166 

bushel ac-1, the direct N2O emission is 5.4 grams N2O (1,421 g CO2e) per bushel of corn produced. 

Adding the indirect N2O emission renders a total N2O emission of 1,642 g CO2e bushel-1, which 

is a 35% reduction compared to the default FD-CIC value of 2,535 g CO2e bushel-1.  

Application of low-carbon nitrogen fertilizer — This provides an option for users to choose 

whether to use grey or green ammonia as the nitrogen fertilizer building block. Grey ammonia is 

the ammonia produced from conventional steam methane reforming of natural gas, which is a 

GHG intensive process and the GREET default ammonia production option. On the other hand, 

green ammonia is the ammonia produced by obtaining N2 from cryogenic distillation and H2 

from low-temperature electrolysis using renewable electricity. More information on other 

alternative pathways to produce low-carbon ammonia can be found in (Liu, Elgowainy, et al., 

2020). This option is provided in the Inputs sheet for other feedstocks as well.  

3.2.1.2 Rice specific inputs 

Methane (CH4) emission is a particular concern for rice cultivation. In FD-CIC, annual CH4 

emissions (per area) from rice fields are calculated by multiplying daily EFs by cultivation 

period of rice, with Eq 2 adopted from the IPCC 2019 Chapter 5, Eq 5.1 (IPCC, 2019): 

𝐶𝐻4 = 𝐸𝐹𝑖 × 𝑑𝑖 

𝐸𝐹𝑖 = 𝐸𝐹𝑐 × 𝑆𝐹𝑤 × 𝑆𝐹𝑝 × 𝑆𝐹𝑜 

𝑆𝐹𝑜 = (1 + ∑ 𝑅𝑂𝐴𝑖𝑖 × 𝐶𝐹𝑂𝐴𝑖)
0.59                                         (Eq.2) 

 

Where CH4 is the annual methane emission (kg CH4 ha-1); EFi is the daily emission factor for a 

specific condition i (kg CH4 ha-1 d-1) and di is the cultivation days of rice for a specific condition 

i. EFc is the baseline EF for continuously flooded fields without organic amendments. SFw is the 

scaling factor to account for the differences in water regime during the cultivation period. SFp is 

the scaling factor to account for the differences in water regime in the pre-season before the 

cultivation period. SFo is the scaling factor that varies with both the type and amount of organic 

amendment applied. ROAi is the application rate of organic amendment i, in dry weight for straw 

and fresh weight for others (Mg ha-1). CFOAi is the  conversion factor for organic amendment i in 
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terms of its relative effect with respect to straw applied shortly before cultivation. The values for 

the above-mentioned parameters can be found in Table 4.  

Table 4. The EF (kg CH4 ha-1 d-1) and coefficients to calculate annual CH4 emissions from U.S. rice farming 

 Disaggregate  

Emission factor Application domain Default value1  Uncertainty range 

EFc
2  North America 0.65  0.44 – 0.96  

d (days) North America  139 110 – 165  

SFw  Continuously flooded  1.00  0.73 – 1.27  

Single drainage period  0.71  0.53 – 0.94  

Multiple drainage periods  0.55  0.41 – 0.72  

Regular rainfed 0.54  0.39 – 0.74  

drought prone 0.16  0.11 – 0.24  

Deep water 0.06  0.03 – 0.12  

SFp  Non flooded pre-season 

<180 d  

1.00  0.88 – 1.12  

Non flooded pre-season 

>180 d  

0.89  0.80 – 0.99  

Flooded pre-season (>30 

d) 

2.41  2.13 – 2.73  

Non-flooded pre-season 

>365 d  

0.59  0.41 – 0.84  

CFOA Straw incorporated 

shortly (<30 days) before 

cultivation  

1.00  0.85 – 1.17  

Straw incorporated long 

(>30 days) before 

cultivation  

0.19  0.11 – 0.28  

Compost  0.17  0.09 – 0.29  

Farm yard manure  0.21  0.15 – 0.28  

Green manure 0.45  0.36 – 0.57  

1 The values in bold is adopted in FD-CIC. 

2 CH4 emission is not CH4-C kg emission. 

 

 

It should be noted that SFp, however, is only used to estimate CH4 emission during the rice 

growing period and cannot be used to quantify CH4 emissions that occurred before the cultivation 

period or after harvest (i.e., outside of rice growing season, such as CH4 emission during winter 

flooding period).  
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3.2.2 Soil organic carbon lookup for corn and soybean 

The FD-CIC provides a lookup table for the SOC sequestration potentials corresponding to 

different farming practices based on default simulation results using county-level information (i.e., 

corn/soybean yield record, soil, and climate information) under a 2-year corn-soybean rotation  

(Liu, Kwon, et al., 2020). The following practices are of particular interest, namely whether to 

adopt conservation tillage, whether to apply manure, and whether to plant cover crops. The users 

need to choose from the drop-down list, press the “Refresh” button, and look up the corresponding 

SOC change results (Fig. 6). It should be noted that positive SOC values represent CO2 emissions 

while negative values represent SOC sequestration. Furthermore, the farm-level yields of cover 

crop and main crops (e.g., corn and soybean) provided by users would not affect the SOC change 

per hectare, but the SOC change per bushel of feedstock produced. That is, SOC estimates in the 

FD-CIC are developed at the U.S. County level, not at the farm level. 

In addition, since SOC modeling results are summarized for annualized SOC changes regardless 

of crops grown, the SOC lookup table in FD-CIC 2020 did not provide land management induced 

SOC change for a specific feedstock (e.g., corn). To improve the SOC lookup table for feedstock-

specific results, the total SOC changes estimated from corn-soybean rotation were attributed into 

corn and soybean, separately. It should be noted that the total changes in SOC were driven by the 

changes in both crop yield and farming practices from 2016 through 2045. We first assumed that 

crop yields are constant over the next 30 years (2016 - 2045) based on the yield average from 2006 

to 2015 and then simulated the effects of crop yield on SOC for both corn and soybean. Similarly, 

the effect of diverse farming practices on SOC were simulated with the same assumption on the 

yield. Then, for both cases, we allocated the simulated SOC changes from corn-soybean rotation 

to corn and soybean separately by using the total biomass input rates to the soil from individual 

crops (either corn or soybean). This rendered the feedstock-specific SOC sequestration potentials 

due to the changes in farming practices. Finally, we updated the lookup tables with this new 

information in the FD-CIC 2021. 
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Figure 6: Soil organic carbon look-up table  

 

3.3 Intensities of Inputs worksheet 

In the Intensities of Inputs worksheets, the GHG emissions related to farming inputs manufacturing 

(e.g., fertilizers and energy sources) are all based on the LCI emission results from the GREET 

model to maintain the transparency of CI calculation in FD-CIC. 

3.4 Results worksheets 

FD-CIC estimates the GHG emissions in the unit of carbon dioxide equivalent (CO2e) by 

combining the amount of CO2, biogenic CH4, fossil CH4, and N2O with their 100-year global 

warming potentials of 1, 28, 30, and 265, respectively (Myhre et al., 2013). It reports both GREET 

default and user-specific CI for comparison purpose. The tool provides figures for comparison as 

well. The contribution from each emission source is also calculated and depicted in a pie chart. 

3.5 Stochastic simulation function 

This function requires users to assign probability density functions for key farming inputs 

parameters, specify the number of samples required and the sampling technique to be used, and 

define the forecast variables based on which the stochastic simulations are performed. 

To load the Stochastic Toolkit or unload, the users can click “Load Stochastic Toolkit” or “Unload 

Stochastic Toolkit” on the Overview worksheet. After loading the stochastic toolkit, it will be 

loaded to the “Add-ins” section in the excel Ribbon.    
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3.5.1 Assign probability distribution functions to the input variables 

To assign a probability distribution function, the users need to select an input variable with numeric 

value in excel, click “Cell Input” tab in the stochastic toolkit, select a probability distribution 

function for the input variable (Fig. 7) and parameterize the selected distribution (Fig. 8). The users 

would then be asked to set a name for the variable or click “Cancel” to use location instead of 

name. It is recommended, however, to use the defined name approach. After successfully assigning 

a probability distribution function to the input variable, the cell turns green and the variable is 

automatically added to the “Dist_Spec” sheet. The users need to repeat the process until all the 

input variables participating in the stochastic simulations are defined. To delete the distribution 

from a cell, users can select that cell and click “Delete Distribution” tab in the stochastic toolkit.  

 

Figure 7: A list of probability distribution function for users to choose from  
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Figure 8: Parameters for a normal distribution. Note that parameters depicted in this panel would be different 

when users choose different probability distribution functions in the previous step. 

3.5.2 Specify the number of samples and the sampling technique 

To specify the number of samples and the sampling technique, the users need to click “Sampling” 

tab in the stochastic toolkit. The users can choose between four different sampling techniques and 

enter the number of samples (Fig. 9). An overview of the four sampling techniques is provided by 

(Subramanyan & Diwekar, 2005). 

 

Figure 9: Specification of the number of samples and the sampling technique 
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3.5.3 Define the forecast variables 

To define forecast variables, the users need to go to the “Forecast_Specs” sheet, type in the sheet 

and cell addresses of the forecast variables, and the names defined for the forecast variables (if 

applicable). 

3.5.4 Run stochastic simulation 

To run the stochastic simulation, the users need to click “Run Simulation” tab in the stochastic 

toolkit and set seed automatically or manually. After completing the simulation run, an Excel 

workbook will be generated to display the results from the stochastic simulation. Statistical values 

such as the mean, standard deviation, and 0th to 100th percentile are calculated automatically for 

each forecast variable. The users can save the output Excel file to the directory of their choice.  
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